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SUMMARY 
Results  of  theoretical  and  numerical  investigations  conducted to  develop  economical 
computing  procedures  have  been  applied  to  an  existing  computer  program (see NASA  CR- 
2543)  that  predicts  unsteady  aerodynamic  loadings  caused  by  leading  and  trailing  edge 
control  surface  motions  in  subsonic  compressible  flow. Large reductions in computing  costs 
are  achieved  by  removing the spanwise  singularity  of the  downwash  integrand  and  evaluating 
its  effect  separately  in  closed  form.  Additional  reductions  are  obtained  by  modifying  the 
incremental  pressure  term  that  accounts  for  downwash  singularities  at  control  surface edges. 
Accuracy of  theoretical  predictions  of  unsteady  loading  at high  reduced  frequencies  is 
increased by applying  new  pressure  expressions that  exactly  satisfy  the  high  frequency 
boundary  conditions  of  an  oscillating  control  surface.  Comparative  computer  results 
indicate  that  the revised procedures  provide  more  accurate  predictions  of  unsteady  loadings 
as well as providing  reductions  of 50 to 80 percent  in  computer usage costs. 

INTRODUCTION 

Theoretical  and  numerical  investigations  have  been  conducted  to  identify  a  means  of 
reducing  computer usage costs  for  application of the  subsonic  kernel  function  and  downwash 
collocation  process  described in  NASA  CR-2543  for  predicting  unsteady  aerodynamic 
loadings  caused  by  leading  and  trailing  edge  control  surface  motions  in  subsonic 
compressible  flow. It was determined  that  the  program  provided  accurate  predictions of 
unsteady  loadings for  the  sample cases described  in  NASA  CR-2543.  However, computer 
usage costs  severely limited  its usefulness for  general  application  in  engineering  analysis. 

The  computer  program  of NASA CR-2543 was developed  with  accuracy  and  ease of usage  as 
primary  requirements. m e  numerical  approach that was employed  provided the  most 
accurate  evaluation  of  the  downwash  discontinuity  around the edges of the  control  surfaces 
and  did not  restrict  the user in locating  downwash  stations  in  the  near vicinity of  the  control 
surface edges. 

The  method  employed  for  downwash  evaluation  in  the  vicinity  of  the  control  surface edges 
was to  integrate  the  singularity  of  the  spanwise  integrand  by  numerical  quadrature. 
Although  this  technique  provides  excellent  downwash  evaluations,  it was found to  be very 
costly,  in  that  40% of the  downwash  calculation  time was  involved  in  evaluating  this  small 
portion  of  the  spanwise  integrand  that  encloses  the  downwash  station. 

The  present  report  describes  an  alternative  method used to evaluate the singularity  in  the 
spanwise  integrand. Use of this  alternative  method will introduce  discontinuities  in  the 
calculated  downwashes  along the hinge  line of the  control  surface.  However,  the  region 
where the  approximate  downwashes  differ  from  the  correct values  is restricted to  a  very 
small  region  near the hinge  line.  This  should not cause  any user apprehension  concerning 
the validity of  the  solutions,  provided  that  downwash  collocation  stations  are  not  placed 
within  the  restricted  regions. 



Other  techniques  employed  to  reduce  the  computer usage costs  consist of:  1 )  limiting  the 
extent  to which the  control  surface pressure terms  are  distributed  over  the  planform, 
2) reformulating  a new integration  algorithm to  minimize the  number  of  integration 
stations on the surface,  and 3) reconstructing  new  pressure  modification  functions to 
reduce the waviness in residual  downwashes. 

The  present  work  represents an extension  of the analytical  methods  developed  in  reference  1 
to  provide  a  capability  for  predicting  unsteady  aerodynamic  loadings  caused by control 
surface  motions  that are both  accurate  and  economical  to  use.  The  computer  program is 
described in NASA CR-145354. 
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ABBREVIATIONS AND SYMBOLS 
All quantities  are  dimensionless  except as noted. 

Local  semichord 

Reference  length 

Local  chord  length  nondimensional  with  respect to  bo 

Chordwise  pressure  modification  function 

Spanwise  distribution  function  of  lifting  pressure 

Chordwise  distribution  function of lifting  pressure 

fl 
Kernel  function 

Reduced  frequency = - 
Mach number  of free  stream 

a b 0  
V 

Forcelarea  Perturbation  pressure on lower  surface 

Force/area  Perturbation  pressure  on  upper  surface 

Forcelarea Pressure difference,  PQ - Pu  (positive  upward) 

(Force/area)/unit q, Surface  pressure  difference  in  mode  j 

Generalized  coordinate  amplitude  for  mode j 

v xo2 + P2 Yo2 
Nondirnensional  sernispan,  S/bg 

Time 

Lengthltime  Free  stream  velocity 

Kinematic angle  of attack  or  nondimensional  normalwash 
W - 
V 
w. /q . e i a t  

3 1  
Cartesian  coordinates,  nondimensional  with  respect to Q 

x  coordinate of the leading  edge 

x  coordinate of the trailing  edge 

x - E  
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'Qs 

YO 

YS 

zcs 

P 

Ph 

OS! 
AcP 
Ah Radian 

AQ Radian 

x coordinate  of  hinge  line  at  side  edge  of  control  surface 

x coordinate  of  planform  leading  edge  at  side of control  surface 

Y-n  

y  coordinate  of  control  surface  side  edge 

Surface  deflection 

doz +tanZ   Ac  

d02 + tan2 AQ 

Lifting  pressure  coefficient (PQ - pU)/(1/2u V )  

Sweep  angle of  the  control  surface  hinge  line, positive swept  back 

Sweep  angle  of  leading  edge,  positive  swept  back on right-hand 
side 

coordinate  of  hinge line at  span  station 77 

Dummy variables for (x, y, z )  

Rotation angle  of  control  surface hnge line  at (q), measured  in 
the  plane  perpendicular  to  the y-axis and  positive  trailing  edge 
down 

P Mass/length3  Density  of the fluid 

7 Time  Nondimensional  time 

4 

0 1  /time  Circular  frequency of oscillation 



ANALYTICAL AND NUMERICAL PROCEDURES 

AREAS OF INVESTIGATION 

This  report  describes  the  procedures used to  reduce  computer usage costs involved in 
calculating  unsteady  aerodynamic  loadings  caused  by  control  surface  motions  in  subsonic 
flow.  The  procedures  are  applicable to planform  configurations  having  full  span 0; multiple 
partial  span  control  surfaces  with  arbitrary  spanwise  location. 

The  analysis  coordinate  system is defined in figure  1  for  a  typical  leading  edge  andlor 
trailing  edge  control  surface  configuration. 

Z 

> 

Figure'  1.-Analysis Coordinate System 

Analytical  and  numerical  investigations have been  conducted  to  evaluate  the  computational 
efficiency of the  procedures used in the  computer program  described in NASA CR-2543. 



Various  areas  of  investigation that have  led to  changes in the  structure of the original 
program  are  as  follows: 

1) Revison of the spanwise  integration  procedure  for  downwash  calculation.  The  spanwise 
integrand  contains  a  logarithmic  singularity  at  the  downwash  station.  It  has  been 
determined  that  the  method  formerly used for  evaluation  of the singular term  required 
a  very  large  portion  of  the overall computation  time. 

Computational  procedures  have  been revised so that  the singular  term is integrated 
separately,  outside  of  the  numerical  quadrature  process. 

Use of this  alternate  procedure will impose  some  restrictions on the  placement  of 
collocation  stations in the  near vicinity  of the hinge  line.  However, i t  appears  that  this 
limitation will not severely hamper user applications.  Accurate  predictions  of  unsteady 
loadings may  be  obtained,  provided  the  downwash  collocation  stations  are  not  placed 
within  the  restricted regions. 

2) Reductions in computer usage are  acheved  by revising the  distribution  of  lifting 
pressures due  to  downwash  discontinuities. I n  the original formulation,  the  pressure 
terms  that were  developed to satisfy the  control  surface  boundary  conditions were 
extended  over  the  entire  lifting  surface, regardless of  the  magnitude  of  the  pressures 
at large  distances  from  the  control  surfaces.  Pressures  developed  for  motions of a 
control  surface  on  the  right-hand wing were extended to  the  left-hand wing and rolled 
off to zero to satisfy  the  boundary  con'dition  at  the  left-hand  wingtip. 

The  discontinuity  related  pressures have been  found  to  be very  small at  moderate 
distances  from  the  control  surfaces.  Consequently,  the  spanwise  loading  distributions 
have  been  modified  by  deleting  the  small  loadings that  do  not  contribute  to  solution 
accuracy. 

3)  Further  reductions in usage costs  are  achieved by developing  a  suitable  algorithm to 
minimize the  number  of  integration  stations necessary to provide  downwash 
calculations  within  specified  accuracy  limits. 

Stringent  requirements  are  imposed on the  integration  algorithm so that  any large 
variations  of  the  spanwise  integrand  are  accurately  accounted  for in  the analysis  of 
planforms  with  arbitrary  aspect  ratio  and  taper  ratio. 
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Cost  reductions  are  also  achieved  by  reducing  the waviness of  the  residual  downwashes 
so that  only  a  small  number of collocation  stations  are  required to  obtain  accurate 
predictions  of  unsteady  loadings  for small  span control  surface  configurations.  Numerical 
investigations  have  indicated  that  accurate  loading  predictions  require  an  increasing  number  of 
collocation  stations to  be  distributed  over  the  lifting  surface  in  the  chordwise  direction 
as  the  chordwise  length  of  the  control  surface  tends  to  zero.  Program  modifications 
have been  made to  allow  cost  effective  analyses  of  configurations  having  extremely 
small control  surface  chord  lengths. 

New pressure  expressions  that  exactly  satisfy  the  boundary  conditions on a  control 
surface  oscillating  at  high  frequency in high  Mach number  flow  conditions  have  been 
developed  and  incorporated  within  the  program.  Derivation  of new  pressure 
expressions that  are  not  frequency  limited  are  presented in Appendix  A  and  Appendix 
B. 

Each of the  above  described  items  of  interest is discussed in detail in the  following  sections. 
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MODIFICATION OF THE SPANWISE INTEGRATION  TECHNIQUE 

The  downwash  integral  equation  formulated  within NASA CR-2543 is given as  follows: 

where 

f (rl) is the  spanwise  variation  of  the  pressure  function 

g (5,rl) is the chordwise  variation  of the pressure  function 

K (x, 5 , y , q ) represents the kernel  function 

G'(X,Y,Y> is the spanwise  derivative of the  chordwise  integral  evaluated  at  the 
downwash  station 

This  form  of  the  downwash  equation  has  two  singularities  removed  from  the  integrand  such 
that  the  improper  integrals,  due to  the  dipole  terms of the kernel  function,  are easily 
evaluated.  However, the integrand  contains  an  additional  singularity that requires 
application  of special integration  techniques necessary to provide  accurate  downwash 
calculations. 
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An example of the singularity  characteristic  that  exists  at  the  downwash  station is shown  in 
figure 2 that  presents  a  plot of an  example of the spanwise  integrand of equation (1 ). 

Chordwise 
integral 

60. 

40. 

20. 

0. 

- 1  

- 

- 

- 

1 I I I 
- .5 0. .5 1. 

TJlS 

Figure 2.-Spanwise Variation of Integrand of Equation ( 1 )  

In NASA CR-2543, contribution of this  singularity to  the  downwash is evaluated by 
applying  suitable  integration  quadrature  functions to  a localized  region around  the  downwash 
station.  However,  spacing  requirements for spanwise  integration  stations  in  the very near 
vicinity of the  downwash  station  impose severe accuracy  restrictions on chordwise 
integrations. 

Numerical  investigations  indicate  that  up to 40% of the  computation  time is consumed  in 
applying  this  integration  technique to evaluate  the  contribution of this  singularity to  the 
downwash. 
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Significant  reductions  in  computer usage  costs are  achieved  by  reducing  the  number  of 
spanwise  integration  stations  required to  evaluate the  integrand  in  the  near  vicinity  of  the 
downwash  station.  Cost  reductions  result  from  changing  the  mathematical  form  of  the 
integrand.  The  analytical  expression  describing  the  singularity  and  its  strength is subtracted 
from  the  integrand  and  its  downwash  contribution is evaluated  outside  of  the  downwash 
integral.  The  analytical  form  of  the  singularity is obtained  from  downwash  evaluations 
involving the singular  part of the  kernel  function.  Terms  of  the  kernel  function  that 
contribute  to  the  singularity  expression  are  designated as the  dipole  term,  the inverse square 
root  term,  and  the  logarithmic  term as indicated  in  the  following  integral  expressions. 

Y. dipole term 

x inverse square root term 

The  chordwise  integrals  are  evaluated  by  forming  a  Taylor series expansion of 
AP ( E ,  y )  e -ik (x- l )  about  the  downwash  station  and  inserting  the  expansion  into  the 
above  integrals.  The  Taylor series expansion is given as: 

10 
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Insertion  of  equation (5) into  equation (2) and  performing  the  chordwise  integration yields 
an  expression for the spanwise  integration given as: 

The singularity due  to  the inverse square  root  term is obtained  in  a similar  fashion that yields 

The spanwise  singularity  contained in the third  integral  may be  identified  by  redefining  the 
logarithmic  kernel  function  for values of 5 < x as  being 

and  inserting  this into  equation (4) provides  the  following  singular  expression 

The singularities  are  combined  and  subtracted out  of  the spanwise  integrand  and  evaluated 
in closed form  outside of the integral. The  combined  singularity  strength is given as 

* regular  terms  are  nonsingular  functions 



I1111 

Thus the  singularity  strength to be  subtracted from the  integrand is 

The closed form evaluation  of  this  singularity using  Mangler's technique  of  reference 4 is 
then given  as 

The  modified  form of the  downwash  integral  takes  the  final  form given as follows: 

x 
+ T ( x , y ) [ q   l o g ( % ) - % + y  2 

(1 2 )  
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Numerical  evaluation  of the spanwise  integrand  of  equation (1 2) is shown  in  figure 3 for  the 
same  analysis  case  of  figure 2. The singularity is no longer  present  at  the  downwash  station 
and the integrand  in the vicinity  of  the  downwash  station  can  be easily evaluated  using 
integration  quadratures  having  only  a  small  number of integration  stations  within  this 
localized  zone. 

Chordwise 
integral 

20. 

0. 

- 20. 

-40. 

1 I 1 

- 1. - .5 0. .5 1 

Spanwise coordinate V I S  

Figure 3.-Spanwise Variation of Integrand Defined  in Equation (1.21 

This  modification of the spanwise  integrand has  a  significant  effect  in  reducing  the 
computing  costs.  However,  this  reduction  in  cost  imposes  restraints  on  the  placement of 
collocation  stations  in  the near vicinity of pressure  discontinuities. 
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Figure 4 represents  the  chordwise  downwash  distribution  for  a  configuration  having  a 20% 
chord  control  surface  and  applying  the  integration  technique  of  evaluating  the  spanwise 
integral  using  suitable  integration  quadrature  procedures.  (See  equation (1) ) 

0 = Calculated points 
Hinge line 

1.5 -I 
- A - - 

Downwash 

1.0 - 
A =  1. 

-"--e - - ._a-l 
I I I I 

.76 .78 .80 .82 .84 

I I I I 

Chordwise coordinate  x/c 

Figure 4.-Chordwise Downwash Distribution Obtained by  Applying Method of 
Equation (7) (Singularities Evaluated by Appropriate Quadratures) 

The  downwash is smooth  on  either  side  of  the  hinge  line  and  the  discontinuity value  across 
the  hinge  line  matches  the  required  discontinuity  for  unit  rotation  of  the  control  surface. 
Use of this  integration  method  does  not  impose  any  restriction on the  placement  of 
collocation  stations  in  the  near vicinity  of the hmge  line. 

However,  a  restriction  is  required for  the  placement  of  collocation  stations in the  near 
vicinity  of the hinge  line  when using the  singularity  subtraction  procedure  of  equation (1 2). 
A downwash  distribution  obtained  by using the  integration  method  based  on  equation (1 2)  
is shown in  figure 5. 
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Singularities  appear at  the hinge  line  coupled  with  some  downwash  waviness in  the 
distributions  over  a  small region away  from  the  hinge  line.  The  singularity  at  the  hinge  line 
is due  to  the  inability  of  the  Taylor series to properly  represent  the  pressure  function  that 
contains  a  logarithmic  singularity  at  the  hinge line. 

Hinge  line t 

Downwash 
1.5 - 0  

-c - .OOlC 
- - - 

.001c - 
,. - - - - - - 

I I I 1 I I 1 I 1 B 
.76 .78 .82 .84 

Chordwise coordinate x/c 
- .5 

Figure 5. “Downwash  Distribution Obtained Using Method of Equation (12) 
(Singularity Removed  and  Evaluated Separately) 

It is recommended  that  the  collocation  stations  are placed no closer to   the hinge line  than 
three-fourths  of 1 percent local chord. 

A spacing  restriction is also  recommended for the  placement of collocation  stations in the 
near  vicinity  of  the  leading  edge  when  the  procedure  of  equation (1 2) is used to  evaluate  the 
downwash  distributions. 
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Downwash  distribution of figure 6 indicates  that  the  calculated  downwashes  become  singular 
at  the leading  edge  and  that waviness in  the  distribution  extends  for  a  distance  of 1 '/2 percent 
of  the  local  chord  aft  of  the  leading edge. 

Lead in1 
16. 

Calculated 
downwash 15. 

14. 

4 

- .003C 

I I I I I I 

0 0.1 0.2 0.3 
Chordwise coordinate  x/c 

Figure 6.-A Calculated Down wash Distribution Near Leading 
Edge Using the Singularity Procedure of Equation (12) 

Therefore,  it is recommended  that  the  downwash  collocation  stations  are  separated  from  the 
leading  edge  by  a  distance  equal to  or  greater  than 1 % percent  of local chord. 

Imposition  of  restrictions on the  placement  of  collocation  stations in the  near  vicinity  of 
pressure  singularities  should not severely hamper user applications.  Accurate  predictions  of 
unsteady  loadings  may  be  obtained  provided  that  the  collocation  stations  are not  distributed 
within the  above  mentioned  restriction  regions. 
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REVISION OF SPANWISE LOADING  FUNCTIONS 

The  solution process  developed to obtain  unsteady loadings  over  a  lifting  surface with 
discontinuous  downwash  distributions is initiated by developing  a  pressure distribution 
inducing  downwash  discontinuities  that  are  identical  with  those  contained  in  the  kinematic 
downwash  distribution. This downwash  distribution is then  subtracted  from  the  kinematic 
downwash to provide  a  residual  distribution  that is smooth and  continuous,  for  which  the 
corresponding  pressure  distribution  may  be  obtained  by  standard  collocation  procedures. 

The  key to this  solution  process is the  development of  pressure  expressions  that will exactly 
match  the discontinuities  in  boundary  conditions  (downwash)  along  the edges of  the  control 
surface. 

Pressure  expressions that satisfy  this  requirement  are  presented  in  Appendix  A  and  Appendix 
B for  the  leading  and trailing  edge control  surface  configurations,  respectively.  These 
pressure  expressions  are valid within  localized  regions  of the  discontinuities,  but have not 
been matched  with  the  planform edge boundary  conditions. However, in  prior  work 
reported  in  reference  1,  the pressure  expressions  defined  for  the  discontinuous  downwash 
regions  have been  extended  to  the  limits of the  planform.  Boundary  conditions were 
satisfied exactly  by  requiring  the pressures to  go to zero  in  proportion to  the  square  root of 
the  distance  from  the  planform edges.  For example,  the pressure  expressions  developed  for 
motions  of  a  control  surface  located  on  the  right-hand side  of the  planfonn  are  extended  to 
the edges of  the  planform  (including  the  left-hand  planfonn  region)  and are then  multiplied 
by other  modifying  functions  such  that  the pressure is forced to zero in proportion  to  the 
square root  of  the  distance  from all the  planform side edges. 

Results  of recent  investigations  indicate  that  this  manner of extending  the  discontinuity 
pressures  over the  entire  planform is a  significant factor in requiring large computer  times 
for  application of the  program of  reference  1.  Subsequent investigations have revealed that 
the  spanwise  and  chordwise pressure distributions  induced  by  downwash  discontinuities 
are very localized to  the regions of  the discontinuities.  Calculation of the  downwash 
discontinuities  depends  only  on  the local  pressure  gradients and  not  on  the overall level of 
the  pressure  distribution a t  large distances  away  from  the  discontinuities.  Therefore,  the 
calculation  time  may  be  reduced  by  defining  the pressure  expression  only  over localized 
regions of  the  planform. 

A  representative  example,  demonstrating  that  the  discontinuity pressure  expressions 
contain  only  localized  gradients  near  the  control  surface side  edges,  may be  obtained  by 
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examining  plots  of  the  discontinuity  pressure  expressions.  Figure 7 represents  the  sample 
planform  having  a  control  surface,  displaying  a  single  spanwise  ray  where  the  pressures have 
been  calculated  at  the  indicated  circles  due to motions  of  the  right-hand  side  control 
surface.  Figures 8 and 9 show  the  spanwise  variations of  in-phase  (real)  and  out-of-phase 
(imaginary)  parts,  respectively,  of  the  discontinuity  related  pressure  function. 

0..  0. 

Figure 7.-Analysis Planform Used to Evaluate Pressure Variation 

Inboard Outboard 
edge edge 

- .25 0. 25. .5 .75 1. 

Spanwise coordinate q / S  

Figure 8.4n-Phase Part of  Pressure Distribution 
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Inboard Outboard 
edge edge 

- .25 0. 

I Spanwise coordinate q/S 

Figure  g.-Out-of-Phase  Part of Pressure Distribution 

Pressure  distributions  shown in  figures 8 and 9 contain  steep  gradients  near  the  control 
surface  side edges and  diminish to small and  almost  constant values at relatively  small 
distantes  from  the  side  edges. 

It  should  be  noted  further  that  the  pressures  tend to  become  constant  along  chordwise 
stations  located  at  relatively small distances  away  from  the  control  surface  side edges.  This 
characteristic  of having  slightly  varying  chordwise  distributions  of  pressure  coupled  with 
very small  spanwise  gradients,  has the  effect of raising or  lowering the overall level of the 
discontinuity  related  pressure  distribution,  but  does  not  contribute  to  the  generation  of  the 
discontinuities  required in downwash.  Consequently,  the  spanwise  pressure  modification 
functions  have  been  modified so that  the pressures  inboard of the  control  surface  are 
reduced  smoothly to zero  beyond  a relatively  small distance  from  the  inboard  side  edge.  The 
function is constant  over  the  length of the  control  surface to  maintain  the  singularity  strengths 
of the  pressure  distribution.  The  spanwise  modification  function  at  stations  outboard  of  the 
control  surface  retains  the original square  root roll-off  characteristics  that  were  contained  in 
the original development.  The roll-off function  inboard of the  control  surface has the 
characteristics  of  maintaining  second  derivative  continuity  at  the  end  limits  of  the  interval  to 
ensure  downwash  continuity  across  the  end  stations of the interval. The  length  of  the roll-off 
interval  has  been  selected on the basis of  minimizing  undesirable  fluctuations  of dow11wash 
caused by  the  spanwise  gradient  of  the roll-off function. 

MODIFICATION  OF SPANWISE INTEGRATION ALGORITHM 

The  integration  algorithm  developed  for  the  computer  program  described  in NASA CR-2543 
has  been  modified to provide  increased  accuracy  and  more  efficient  computational 
integration  procedures  in  predicting  unsteady  loadings  due to  control  surface  motion. 

h integration  algorithm  has  been  developed  for analysis of a basic  lifting  surface  with 
various  combinations  of  leading  edge  and/or  trailing edge control  surfaces.  Control  surfaces 
may  be  located  anywhere  along  the  leading  or  trailing  edges. 
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Descriptions  of the  integration  procedures  are  presented  in  the  following  subsections. 

BASIC LIFTING SURFACE ALGORITHM 

The  procedure  applied  in  developing  a  cost  effective  integration  algorithm  consists  of 
subdividing the  total  spanwise  integration  interval  (extending  from  the  left-hand  wingtip  to 
the  right-hand  wingtip)  into  subintervals  having  end  points  at  local  maxima  of  the  integrand 
of  equation (1 2) and  at  discontinuities of the  integrand, with a  minimum  number of 
internal  stations  in  each  subinterval  to  meet  a  specified  accuracy  requirement. 

This  obviously  requires  a  positive  identification  of all peak  values and  discontinuities of the 
integrand. 

Locations  of peak  values  and discontinuities of the  integrand  are  dependent  upon  sweep 
angle,  aspect  ratio,  taper  ratio, Mach number,  reduced  frequency,  number  of  downwash 
chords  and  the  chordwise  distribution of downwash  stations. 

Typical  spanwise  integrands,  following  chordwise  integration,  are  shown in figure 10 and 
figure 1 1 for a highly swept  planform.  These  variations  result  from  a  combination  of  the  first 
chordwise  pressure  mode  (defined as v ( x t  - x)/(x - XQ)) and  ninth  spanwise  pressure  mode 
(defined as sin(17 cos-' ( - q / s ) ) )  for M = .9, k = 1 .O, and  a  downwash  station  located  at 
y/s = 0.10, 

40. 

Chordwise 
integral 

20. 

0. 

- 20 

1- Downwash  station 1 

I 'i 
G 

= 0.1) 

Offset 

.5 0. .5 1 .  

q / s  - Spanwise coordinate 

I 
G h 
0 = Calculated  values 

Figure  70.-Real Part of  Integrand of  a Swept Planform Analysis at M = .9, k = 1. 
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Chordwise 
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- 20, 

- Downwash  station ~ 

(y/s = 0.1) 

c__ Offset 

0 = Calculated values 

- 1 .  -.5 0. .5 1.  

V/s - Spanwise coordinate 

Figure 7 1.-Imaginary Part o f  integrand of  a Swept Planform Analysis at M = .9, k = I .  
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The  integrand  plots  of  figure 10 and  figure 1 1 exhibit  a  slope  discontinuity  at  the  planform 
centerline. Also a  peak value occurs  just  outboard  of  the  downwash  station,  and  the 
integrand  sometimes  exhibits  an  oscillatory  character in the vicinity  of  the  downwash 
station. 

The  oscillatory  character  integrand is apparent in figure 12, which is derived  from  the  same 
parameters  just  identified  with  the  exception  that  the  downwash  station is located  far  away 
from  the  planform  centerline.  The  distribution  shown  in  figure 12 also  exhibits a slope 
discontinuity  at  the  centerline,  a  high  gradient  loading  outboard of the  downwash  chord, 
and an oscillatory  character in regions adjoining  the  downwash  station. 

40. 

Chordwise 
integral 

20. 

0. 

,675 

o = Calculated  values 

.525 

- 1 .  - .5 0. .5 
q / s  - Spanwise coordinate 

- Downwash station -, 

k Offset 

1 .  

Figure 12.- Real Part of Integrand of  a Swept  Planform 
Analysis Having a Downwash Station at y h  = 0.8 
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The  slope  discontinuity in loadings at the planform  centerline is due to the  discontinuities 
in  direction  of  the  leading  and  trailing edges at  the  planform  centerline. 

The  oscillatory  character  of  the  spanwise  integrand is due  to  the waviness of  the  spanwise 
pressure  mode.  The  particular  spanwise  pressure  mode used in  these  analyses is the highest 
order  mode  that  would  be  retained  in  an  analysis  with  nine  downwash  chords. 

The  ninth  spanwise  pressure  term is  given by 

A P ( n )  = s i n  ( 2 N - l ) e  = s i n  1 7 8  (N=9) 

where e = c o ~ - l ( - n / s )  

The  comparison  of  the  ninth  spanwise  pressure  mode  plot,  shown i n  figure 13 with  the 
results  of figure 12,  indicates  that  there is a  one-to-one  correspondence  between  peak values 
of the  integrand  plot  and of the  pressure  distribution. 

.6 

Sin [ 17 cos-’ ( -  q / s )  ] 

.2 

.o 

- .2 

-1.0 
-1.0 

1 .o 

- .6 

- .6 -.2 .o .2 .6 

q / s  - Spanwise  coordinate 

1 .o 

Figure 13.-Distribution of  Ninth Spanwise  Pressure Mode 
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The  only  datum  remaining to be  identified  (prior  to  subdividing  the  integration  interval) is 
the loading  station  offset  from  the  downwash  station  shown  in  figure  10. 

Cause  of  the high gradient  loadings at  stations  outboard  of  the  downwash  station  may  be 
traced to  the combined  effects of planform  sweep  and  kernel  function  characteristics. 

The  particular  term of the kernel  function  associated  with high gradient  loadings is the 
dipole  term,  defined  as 

where 

x = .chordwise  coordinate of the  downwash  station 

y = spanwise  coordinate  of  the  downwash  station 

= chordwise  coordinate  of  the pressure station 

7 = spanwise  coordinate  of  the  pressure  station 

p 2 =  1 - M2 

M = Mach number 

- 1  For  simplicity,  the ~ term is omitted in the following  discussion 

The  simplified  expression  for  the  downwash  integrand  takes  the  form 

( Y  - a>2 

Wherein AP(E, 7) is the  assumed  pressure  loading  function  described in terms  of  planform 
coordinates having zero values  ahead  of the leading  edge  and  finite  values on  the  planform. 

The kernel  function is described  in Cartesian coordinates  and  exists  over  the  infinite  plane 
z = 0. 
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Fbr high  Mach number cases, the simplified  form of the  kernel  function  has  a value that is 
slightly less than 2.0 for  stations  ahead  of  the  downwash  station  and  a value slightly  greater 
than  zero  for  stations  downstream of the  downwash  station. 

Thus,  the  integrand  of  the  chordwise  integral  (formed  by  the  product  of  the  pressure  loading 
and  kernel  function) is relatively large for  regions  ahead of x  and  much  smaller  for  regions 
downstream of x. For  swept  planforms,  the  large  loadings of the  chordwise  integrand is 
confined to that  portion of the  planform  ahead of x  and  extending  spanwise  to  the 
intersection  of  the  leading edge. Chordwise  integrand  loadings  take  on  very  small values at 
spanwise  stations  located  outboard  of  the  leading  edge  intersection.  Thus,  the  integrand 
of  the spanwise  downwash  integral  has  rapid  change in value in  the near  vicinity  of the 
leading  edge,  where  the  leading  edge is intersected  by  the  x-coordinate  line  through  the 
downwash  station. 

The  station  of  rapid  loading  change is near  the  leading  edge,  but  not  exactly  on  the  leading 
edge,  except  for  those cases where  the  shortened  form of the kernel  function  becomes 

for n = y 

An example of the  spanwise  integrand  variation  for  a  swept  planform in steady flow is 
presented  in figure 14. The  downwash  station is located  at 10% of the  chord  length  aft of 
the  leading  edge  and  has  a  spanwise  coordinate  of  y/s = 0.40. The  chordwise  pressure  mode 
is defined as d ( x t  - x)/(x - XQ),  and  a  spanwise  pressure  mode is defined as dl - ( q / ~ ) ~  
with M = .9, and k = 0.0. 

Initial  inspection suggests that  the  first derivative of the  spanwise  integrand  may have a 
discontinuity  just  outboard of the  downwash  station.  However, an enlargement,  shown in 
figure 15, indicates  that  the  curve is smooth  and  continuous.  Further  investigations  indicate 
that  the  distribution  becomes  more  rounded as the  downwash  station is moved  further  aft 
of the  leading  edge. A plot  of  locations  of  the  maximum values  of the  downwash  integrand 
is shown  in  figure 16 for  downwash  stations  located on the  y/s = 0.4  downwash  chord. 
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Figure 14.-Distribution of Spanwise Integrand in Steady Flow  at M = .9 
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Figure 15.-Enlargement of Critical Loading Region of Figure 14 
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Figure 16.-Location of Maximum integrand Values for a Downwash Chord at y/s = .40 

Results of  numerical  investigatorls  indicate  that  the  offset  distance is not affected  by 
variations in reduced  frequency  but is Mach-number  dependent in accordance  with  the 
relationship 

where  all  offsets  are  referenced to  the  offsets  obtained  for  the case  of M = .9. 
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Graphically  obtained  offset  distance  definitions  required  for  the  arbitrary  sweep angle  case 
are provided in figure 17. 

0.  .5 1.  2. 3. 
Tan AQ 

Figure 17. -Offset Distance Definition as Function of Sweep Angle 

Offset  distances  applicable to  configurations having  leading  edge  sweep  angles  equal t o  or 
greater  than A, 2 tan" ( . 5 )  are given by 

Offset  distance  for  configurations having sweep angles less than AQ < tan" ( . 5 )  is given by 

I 

* [ 4tanAe-6tan2hQ+4tan3AQ ][. 867861) 
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Offset  distances  for  downwash  stations  located  in  the  near  vicinity of a  swept  trailing  edge 
are  obtined  from  the  leading edge offset  definitions by replacing xQ by xt and  tan AQ by 
tan  At. 

Once the  stations of peak  loadings  and  loading  discontinuities  have been identified,  the  total 
integration  interval is subdivided into  subintervals  with  end  points  located  at  the  critical 
loading  stations.  Checks  are  made to ensure  that  no  more  than  one  inflection  point is 
contained  in  any  subinterval to obtain  sufficient  accuracy  with low order  integration 
quadrature  formulas. 

Results  of  numerical  investigations  indicate  that the  downwash  integrand  becomes 
increasingly  oscillatory  and  more  difficult to  integrate as the  location  of  the  downwash 
station  approaches  the region near  the  intersection of the trailing  edge  with the planform 
centerline. 

Figure 18 represents  a  plot  of  the  integrand  obtained  for  a  downwash  station  located  near 
the  trailing  edge  at  a  spanwise  station  of y/s = ,0826  for M = 0.90 and k = 2.5. 
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Figure 18. -Spanwise Integrand for a  Down wash Station Located Near Trailing Edge in 
Midspan  Region for M = .9, k = 2.5 
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An estimation  of  the  maximum  error  that  results  for  this  highly  swept  configuration is 
obtained  by  comparing  a  set of precise  downwash  calculations  with values obtained  from 
the  present  integration  algorithm. 

The  set  of  'precise'downwash  calculations is obtained  by  subdividing  the  total  integration 
interval into  many  subintervals  and  applying  a  high  order  quadrature  rule  in  each  subinterval. 
Results  of the  'precise'integration  are  presented  in  table 1, representing  a  column  of  the 
downwash  matrix having nine  spanwise  and six chordwise  pressure  terms.  The 108 entries 
in table 1 are  listed  in the  order 

"_ "_ "_ "_ 

(6,8)R (6,811 (6,9)R  (6,9)I 

wherein (m,n)  (m,n)  represent  the real and  imaginary  downwash  components  associated 
with  the myth chordwise  and  the  n'th  spanwise  pressure  modes. 

R' I 

Table 2 represents  downwash  values  obtained  by the  present  integration  algorithm. 

Differences  between  corresponding  entries  in the  two  tables  provide  a  measure  of  the 
maximum  error in downwash  calculation  that is t o  be  expected  in  the  analysis  of  highly 
swept  planforms  for high subsonic Mach numbers  and large  values of k. 

It is to  be  noted  that  the  present  integration  algorithm  allows  any  combination  of  spanwise 
and  chordwise pressure  terms to  be used provided that  the  product of numbers  of  spanwise 
and  chordwise  terms  does not exceed 72,  and  the  number  of  chordwise  terms  does  not 
exceed 8. 
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Table 1.-High Precision Downwash Matrix Obtained for  the  Configuration of Figure 18 
with M = .9, k = 2.5 (Nine Spanwise  and Six Chordwise Pressure Terms) 

-4.722E+00 - 
-1.321E+01 
5.255E+00 
4.025Et00 - 
-2.334E+00 

-2.227E+00 
-1.046E+00 
-2.178E+00 
-1.776E+00 
-3.780E-01 

4.736E+00 

-4.724E+00  -2.331E+00 
-4.373E+00  9.147E+00 
7.093E-01  -9.509E+00 
-6.131E+00  -4.319Et00 
2.088E+00  -6.413E+00 
5.565E-01  -5.224E+00 
2.136E+00  -5.025E+00 
1.541E+00  -3.259E+00 

3.802Et00 
1.175E+01 

Table 2.-Downwash Matrix Obtained by Present Integration Algorithm for the 
Configuration of Figure 18 with M = .9, k = 2.5 (Nine Spanwise  and Six 
Chordwise Pressure Terms) 

i. ~ E + O I  -4.472~+00 
-5.613E+00  -9.311E+00 

"-REAL".. 
-8.221E+00 
5.403Et00 
4.741E+00 
-4.735E+00 

"-1MAG"- 
4.790E+00 
6.810Et00 
-7.484E+00 
-5.877E-01 

"-REAL"- "-1MAG"- 
4.862E+00  -5.845E+00 
-7.915E+00 -6.245EtOO 
-3.300Et00  6.694E+00 
7.329E+00  -1.936E+00 

-6.132E+00 -4.305E+00 
7.054E-01 -9.492E+00 

2.095E+00  -6.408E+00 

2.151E+00  -5.031E+00 
5.670E-01  -5.220E+00 

1.549E+00  -3.266Et00 

"-REAL--- 
-1.078E+00 
9.841EtOO 
8.781E-01 
-9.736E+00 
5.789E+00 
4.238E+00 

1.146E+00 
7.llOE+00 

-4.163E+00 

-1.853E+00 

-2.054E+00 
-7.037E-02 

-1.208E+W 2.600E+00 
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ALGORITHM FOR CONFIGURATIONS WITH CONTROL SURFACES 

The  algorithms  for  configurations  with  control  surfaces  have  been  constructed t o  provide 
accurate  predictions of unsteady  loadings  for  control  surfaces  of  arbitrary  size  and  location 
along  the  leading  and/or  trailing edges. 

Extensive  use  has  been  made of field plots t o  define  the  locations  of  peak loadings or 
loading  discontinuities  in  spanwise  plots  of  the  downwash  integrand  (equation (1 2)). 
Field plots of critical  loading  locations  are  developed  from  plots  of the  integrand  for  a 
mesh  of  downwash  stations  distributed  over  the  planform. 

The  planform is divided into zones  (figure 19) wherein the integrand  plots  have  similar 
characteristics for all downwash  stations  in  the  zone. 

Outboard 
\ side-edge 

Figure 1g.Subdivision  of Planform into Zones  Having Similar Downwash Integrand 
Characteristics 
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Spanwise  locations  of  critical  loading  stations  for  a specific zone  are  superimposed  on  the 
sketch  of  the  planform.  Stations  with similar characteristics  are  joined  by line segments to  
form  a  curve  to  denote  the  manner  in  which  the  critical  loading  locations vary over the 
surface of the  planform. 

A typical field plot  of  critical  loading  stations  developed  for  downwash  stations  located 
inboard  and  aft  of  the  control  surface is shown in figure 20, wherein  the  outline of the 
planform  and  control  surface is denoted  by solid  lines  and the critical  loading stations  are 
denoted  by  dashed line  segments. 

Near  trailing 

Figure 20.-Field  Plot o f  Critical Loading Locations fora Downwash Zone that is Inboard 
and A f t  of the Control Surface 
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The end  points  of  the  spanwise  integration  subintervals  were  determined  from  the 
intersection  of  the x coordinate  (of  the  downwash  station)  with  the  critical  loading 
locations  as  indicated  by  the  square  symbols  in figure 20. 

Field plots of the critical  loading  stations  were  developed in a  similar  manner  for  the 
remaining  zones,  and the process was repeated  for several  variations  in the spanwise  locations 
of the  control  surface to  ensure  that all critical  loading  stations  have  been  adequately 
identified. 

Field plot  results of various  swept  planform  investigations  were  combined to define  interval 
subdivision required to  satisfy  accuracy  criteria  for  an  arbitrarily  shaped  control  surface 
configuration. 

A final  check was performed  to  ensure  that  the  spanwise waviness of  the  downwash 
integrand, in any  interval, is compatible  with  accuracy  for  the  order of integration 
polynomial  being assigned to  that  length  of  interval. 
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REVISION OF THE CHORDWISE PRESSURE MODIFICATION FUNCTION 

Cost reductions  may be  achieved  by  reducing waviness of  residual  downwashes so that  only 
a small number of collocation  stations’are  required  to  obtain  accurate  predictions  of 
unsteady  loadings  for  small  span  control  surface  configurations. 

Analysis  results of small  percent  chord  control  surface  configurations  indicate  that  the 
number of collocation  stations available may  be  insufficient to obtain converged solutions 
when applying  the  method  of NASA CR-2543. 

Numerical  analyses  have  been  conducted to  check  solution  convergence of  small percent 
chord  control  surface  configurations  shown  in figure 2 1,  composed of a 20% chord  aileron 
and  a 6% chord  tab. 

Figure 21.-Analysis Planform Used to Check Solution Convergence of Small  Chord 
Control Surface  Configurations 
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Figure 22 represents  the  chordwise  pressure  distribution  obtained  for  a  fixed  rotation of the 
20% chord  aileron.  The  predicted  pressure  distribution  contains  a  chordwise waviness that 
is not realistic  when  compared  with  experimental  data. The pressure  distribution  near  the 
hinge  line  appears to have the  proper  smoothness.  However,  there  is  an  obvious reversal in 
the  curvature  of  the  distribution in the region between  the  leading  edge  and  the  hinge  line. 
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Figure 22.-Steady State Pressure Distribution Due to Deflection of  20% Chord 
Control Surface 

Waviness of  the  chordwise  pressure  distributions is more  pronounced in figure 23  which 
represents  the  steady  state  analysis  results  of  the 6% chord  control  surface  configuration  of 
figure  2 1. The analysis  results  of  figure 23 were obtained using the  maximum  chordwise 
number of downwash  stations allowed by the  program. 

It  appears  that  small  length  fluctuations  are  being caused  by  localized waviness i n  the 
residual downwash  distributions. Localized waviness in  the  residual  downwash  distribution 
may cause the  solution  to be  sensitive to  the  number  of  downwash  stations used in  the 
analysis. 
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Figure 23.-Steady State Pressure Distribution Due to Deflection of  6% Chord 
Control Surface 

The  solution process is graphically  displayed in  figure 24 to indicate  the  technique used t o  
predict  unsteady  loadings caused  by control  surface  motions.  The  procedure  consists  of: 
1)  obtaining  a  kinematic  downwash  distribution  from  the  definition  of  the  modal 
displacements; 2) generating  a  discontinuous  downwash  distribution having discontinuities 
that are  identical to those in the  kinematic  distribution; 3) forming  a  residual  distribution 
by  subtracting  the  generated  discontinuous  distribution  from  the  kinematic  distribution; 
4) obtaining  lifting  surface  pressures  that  satisfy  the  boundary  conditions  defined  by  the 
residual downwash  distribution; 5 )  defining the  total  pressure  distribution over the  surface 
by  summing  the pressures  required to generate  the  discontinuous  downwash  distribution 
with  the pressures that  satisfy  the  boundary  conditions  defined  by  the residual downwash 
distribution. 

Smooth residual downwash  that is free  of  localized waviness will provide  solutions  that  are 
relatively  insensitive to  the  number  and  distribution of downwash  stations on the  lifting 
surface. 
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definition 

Subtract  kinematic 

iscontinuous downwash 

Figure 24.-Solution Process Applied to Trailing Edge Control Surface  Analysis 

Figure  25.-Residual  Downwash Distribution Obtained for Analysis of  6% Chord 
Control Surface Configuration 
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Figure 25  represents  the residual downwash  distribution  resulting  from  analysis  of  the  6% 
chord  control  surface  configuration.  The large gradients  present  in both  the  chordwise  and 
spanwise  directions  are  evidently so severe that  it is difficult to  obtain converged solutions 
with  the  limited  number  of  downwash  stations available in  the  program. 

The  cause  of  the large gradients  generated  in  the  downwash  distribution  has  been  traced  to 
the  chordwise  pressure  modification  function  that is used to  satisfy the  planform  edge 
boundary  conditions.  The  modificaton  function  has  the  characteristics of forcing  the 
incremental  pressures to  approach  zero  in  proportion  to  the  square  root of the  distance  from 
the  leading  and  trailing  edges, as shown in figure  26.  The  modification  function  also 
maintains  a  value  of  unity  at  the  hinge  line  along  with  zero  slope to ensure  proper  evaluation 
of  downwash  discontinuities.  The large chordwise  curvatures  that  are  generated in the 
region aft of the  hinge  line,  within  analyses of  small percent  chord  control  surface 
configurations,  are  responsible  for  the large gradient  downwash  distributions  shown  in 
figure 25. 

x/c - chordwise coordinate 

Figure 26.-Chordwise Pressure Modification Function 
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The  chordwise  pressure  modification  function has been revised and  has  the  characteristics 
shown in  figure 27. 

The trailing  edge boundary  condition is satisfied  by subtracting  a  function  formed  by  the 
product of the trailing  edge  pressure term  multiplied  by  a  chordwise  term  that  approaches  a 
value of unity in proportion  to  the  square  root  of  the  distance  from  the trailing  edge. 

Zero slope 

I I 1 I L I I I I 
0. .2 .4 .6 .8 

x/c - chordwise coordinate 

i 1 .o 

I 
1.  

Figure 27.- Revised  Pressure Modification  Function 

Residual  downwash  distributions  obtained  using  the revised modification  function are 
presented in figure 28  for  the  same analysis case that  provided  the results in  figure 25. The 
highly  localized downwash variations  of  figure 25 that  prevented  solution  convergence  are 
no longer  present in  figure 28. 
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Figure 28. -Residual  Downwashes Obtained in Analysis o f  6% Chord  Control 
Surface Using the Revised Modification  Function 

Comparisons of the pressure  distributions  that  result  from using the  two  modification 
functions  in analysis of  the  small  percent  chord  control  surface  configurations  are  shown  in 
figure 29 and figure 30. 

3. 

2. 

1.  

\:t I I 
I 

I 

"" Original  (fig 22) 

0. .2 .4 .6 .8 1 .  

x/c - chordwise coordinate 

Figure 29.-Comparison of Pressures Obtained for Original and Revised Modification 
Functions-20%  Chord  Control Surface 
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0. .2 .4 .6 .8 1 

x/c - chordwise coordinate 

Figure 30.-Comparison of Pressures Obtained for  Original and Revised Modification 
Functions-6% Chord Control Surface 

Pressure distributions  resulting  from  applying  the revised modification  function  are 
smoothly  varying  and do  not  exhibit  any reversal in curvature.  The  theoretical  distributions 
take on characteristics  similar t o  those  observed  in  experimental  results. 

Solution  convergence  has  been  evaluated to  determine  the  minimum  chordwise  number  of 
downwash  statons necessary to  provide a converged solution  for  the  analysis case of  the 6% 
chord  control  surface  configuration.  Results  of  the  investigation  indicate  that  converged 
solutions  may  be  achieved  for  this  particular  analysis case by using only five downwash 
stations  distributed  over  each  downwash  chord. 

Previous  analysis  results  using the original modification  function  indicate  that  convergence 
cannot  be  attained even  when the  maximum  number  of  eight  chordwise  downwash  stations 
is used in the  analysis. 

Consequently,  significant  reductions in computer costs  can  now  be gained  by talung 
advantage of the  smoother residual  downwash  distributions that result  from  this  revision of 
the  chordwise  pressure  modification  function. 
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RESULTS AND TIMING COMPARISONS 

This  section  contains  comparisons of theoretical  and  experimental  data  that  result  from 
analyses and  tests  of  four  wing-control  surface  configurations.  The  experimental 
configurations  consist  of: 1)  a  swept wing  having a  full  span  flap  (reference 7); 2)  a  swept 
wing having a  partial  span  control  surface  (reference 8); 3)  a  swept wing  having  oscillating 
side-by-side control  surfaces  (reference 6); 4) a highly swept  delta wing having  leading  edge 
and  trailing  edge  control  surfaces  (references 9 and 10). 

Theoretical  pressure  distributions  are  provided  for  a  subsonic  transport-type  wing  and 
control  surface  configuration to  demonstrate  the use of higher order spanwise  pressure  terms 
in  analyses of highly swept  configurations. 

Computer  timing  results  are  provided  for  each  of  the  above analysis  cases. Computer usage 
costs (given in  CP seconds)  were  obtained  for  the original  program reported in NASA 
CR-2543  (reference 1 ) and also for  the  present  prediction  method.  An  estimation  of  the 
reduction in computer usage cost is obtained  by  comparing  the  CP  seconds  required  for  the 
two  methods. All results  were  obtained on a CDC Cyber  175  computer having an FTN 
compiler  with  the  optimization  option  set to  2. 

STEADY-STATE  RESULTS  FOR  FULL-SPAN  FLAP CONFIGURATION 

The full-span  flap configuration  of  reference 7, for  which  measured pressures  were obtained 
with various combinations  of  flap  deflection  and angle of attack, is shown in figure 3 1 .  The 
flap  deflection  and wing  angle  of  attack  were  maintained  at  constant values for  each 
experimental  run. 

(Dimensions in centimeters ) 

Location  of pressure orifices 

0.25 chord  line 

Figure 31.-Experimental Full-Span Flap Configuration of  NACA RM A9G13 
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Experimental  pressures  were  obtained  along  a  streamwise  section  located at   the 50% 
semispan  station.  The  longitudinal  junction  between  wing  and  flap was sealed to  prevent 
leakage  between the  lower  and  upper  surfaces  at  the  hinge  line. 

The  theoretical  pressure  distributions  were  obtained  for  modified  boundary  conditions  that 
account  for  local  streamwise  velocity  variations  due to airfoil  thickness  effects. A 
comparison  of  the  experimental  and  theoretical  results is shown  in  figure 32. 

1.6 

1.2 

(rea I) 
.8 

.4 

0. 
.o .2 .4 .6 .8 1 

x/c - chordwise coordinate 

Figure 32.-Theoretical and Experimental Chordwise Pressure Distribution Obtained 
for  a Full-Span Flap with 6 = 100, a = 00, M = 0.21, k = 0 

Since the sealed  gap condition  at  the  hinge  line  satisfies  the  theoretical  assumptions 
(reference 3) a  suitable basis is provided for evaluating the accuracy  of the  theoretical 
prediction. This comparison  indicates  that  the  experimental values are  theoretically 
predicted withn very  close  tolerances  over the  entire  length  of  the  chord, even  in the 
vicinity of  the  hinge  line. 
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Timing  comparisons  are  shown  in  table 3 for  two Mach number  conditions.  The  results 
indicate  that  there is  a  small  increase in  relative  computer  cost  with  increasing  Mach  number. 

Table 3.-Computer Timing Results for Steady-State Analysis of Full-Span Control 
Surface Configuration 

NASA 

(Sec.) 

NASA 

(Sec.) 
CR-2543 Ratio  CR-3009 

I Total  Execution  Time .3393  29.203  86.064 

Main surface 

.390 1.438 Per  DWP C-Matrix 
.2710 9.353 34.512 Total Control surface 

.096 .243 Per  DWP C-Matrix 
.3939 2.301 5.842 Total 

M = .21 

I I I I I I 
Main surface 

Per DWP I ,245 I . lo5 I C-Matrix 
,4267 Total I 5.882 1 2.510 

M = . 8  
Control surface 

.403 1.438 Per  DWP C-Matrix 
.2802 9.671 34.533  Total 

I I I I I I 

STEADY-STATE RESULTS FOR A  PARTIAL-SPAN FLAP  CONFIGURATION 

The  configuration  with  partial-span  control  surface,  shown  in figure 33, is taken  from 
reference 8, representing  a  planform  that was used in  obtaining  chordwise  pressure 
distributions  due  to  steady  flap  deflection. Pressures were  obtained  on  a  chordwise  section 
located  at  the 46% semispan  station.  The  hinge  line  gap was sealed,  providing a suitable 
basis for  comparing  theoretical  and  experimental results. 

The  pressure  comparison  shown  in  figure 34 indicates  that  the  experimental  pressures  are 
accurately  predicted  by  the  theoretical  technique over  a chordwise  strip  forward  of  the  hinge 
line. The  theoretical  pressures on the  control  surface  are  only slightly  larger than  the 
experimental values. Consequently,  it  appears  that  the  lifts  and  hinge  moments  may  be 
predicted  with  reasonable  accuracy  for  configurations having  a  sealed  gap between wing and 
control  surface. 
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Figure 34.-Theoretical and Experimental Pressure Distribution  for a Partial-Span 
Control Surface with 6 = 1 0 0 ,  a = 0, M = 0.60, k = 0 
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Table 4 provides  a  measure  of  the  computer  costs  involved  for  the  two Mach number cases 
for  both  the original and revised prediction  technique. 

Table 4.-Computer Timing Results for Steady-State Analysis of Partial-Span Control 
Surface Configuration 

I Total Execution Time 

M = .6 

M = .8 

Main surface 
C-Matrix 

Control surface 
C-Matrix 

Main surface 
C-Matrix 

Control surface 
C-Matrix 

~. 
~~ 

~ - ~ -  

I Total 
I 

+""- Total 
Per DWP 

I Total 
Per DWP 

Total 

Per DWP 

NASA  NASA 

(Sec.)  (Sec.) 

102.525 

9.071 

37.431 

3.857 
.259  .110 

38.337  10.654 

1.095  .304 

8.978  3.974 
.257  .114 

37.935  10.876 

1.084  .311 

CR-2543  CR-3009 

SIDE-BY-SIDE CONTROL SURFACE CONFIGURATION 

Ratio 

.3651 

.4252 

.2770 

.4426 

.2867 

I (Dimensions in meters) 
X 

Figure 35.-Side-b y-Side Control Surface Configuration 
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The side-by-side control  surface  configuration  shown  in  figure 35 was used to obtain  unsteady 
pressures  for various combinations  of  flap  deflections.  The  model  has small open  gaps  at  the 
hinge lines and  side edges.  Reference 6 provides no  information  on  exact  distances  between 
control  surface  side edges and  adjacent  pressure  measuring  stations.  The  spanwise  locations 
of experimental  pressure  chords  were  determined  by  measurement  from  the  planform 
drawing. 

Figures 36 and 37 present  comparisons of theoretical  and  experimental  pressures  along  a 
chord  located  near  midspan of the  oscillating  control  surface. 

.06 

.05 

.04 

A% 
(real) .03 

.02 

.o 1 

. 00 
.o .2 .4 .6 .8 1 .  

x/c - chordwise coordinate 

Pressure chord 

Figure 36.-ln-Phase Part of the Chordwise Pressures Due to Motions of Outer Flap for  a 
Pressure Chord Located on the Control Surface, M = 0, k = .372 
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.012 

.008 

*CP 
(imag) .004 

.ooo 

- .004 1 
-.008 

.o .2 .4 .6 
I - 

.8 1. 

Pressure chord 7 

x/c - chordwise coordinate 

Figure 37.-Out-of-Phase Part of the Chordwise Pressures Due to Motions of Outer 
Flap for  a Pressure Chord Located on the  Control Surface, M = 0, k = .372 

Figure 38 presents  a  comparison of pressures  obtained  at  a  station  located  far  away  from  the 
oscillating  control  surface  where  the  pressure  magnitudes  become  quite  small. 

ACP 
(real) 

.o 12 

,008 

.004 

.ooo 

L 
/I Pressure 

erirnent 

.o .2 .4 .6 .8 1. 

x/c - chordwise coordinate 

chord 7 

Figure 38.-In-Phase Part of Chordwise Pressures on a  Chord Located at a Large 
Distance from  the  Control Surface 
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Table 5 presents  timing  comparisons  indicating  relative  computer  costs  with  six  and  nine 
downwash  collocation  chords. 

Table 5.-Computer Timing Results Obtained in Analysis of the  Side-by-Side Control 
Surface Configuration 

NASA 

(Sec.) 
C R -2543 C R -3009 

NASA (Sec.) I Ratio 

Total Execution Time I 218.284 59.181 I .2711 

17.481 8.510 I ,4868 Main surface 
C-Matrix 6 

Collocation 
chords, 
5 points 
per chord 

,583 

87.534 Inboard flap 
C-Matrix 2.91 8 .709 I 

107.152 23.456 I ,2189 Outboard flap 
C-Matrix 3.572 

326.831 

26.421 

.587 

130.952 

2.910 
~~ 

Total Execution Time 

C-Matrix 

C-Matrix Per  DWP 

15.376  .5820 
~. __ 

9 
Collocation 
chords, 
5  points 
per chord 

32.140 I ,2454 

.714 

35.579  .2191 Outboard flap Total 162.351 
C-Matrix Per  DWP I 3.608 ,791 I 

SWEPT DELTA WING  WITH LEADING AND  TRAILING  EDGE CONTROLS 

The  configuration  shown in  figure 39 is taken  from  reference 9, wherein  experimental 
studies  were  reported  on  the use of  active  controls t o  suppress  flutter.  Steady  state  hinge 
moments  obtained  in  this  investigation were  published in reference 10. 
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Trailing edge control 

I 

I 

I 

1.072 (Linear dimensions in meters) 

1.27 

Figure 39.-Experimental Delta Wing Configuration of NASA TM X-2909 

Figure 40 provides  a  comparison  between  theoretical  and  experimental  hinge  moments 
obtained for a leading  edge and a  trailing  edge control  surface  deflection i n  steady flow. 

Hinge-moment Leading edge control 
coefficient 
per  degree 

.03 

.02 

.01 

. 00 

.03 

Present theory -, r Measured 

Hinge-moment Trailing edge control 
coefficient 
per  degree 

k k  .oo 
.o .4 .6 .8 1.0  1.2 

Mach number 

,- Measured 

Present theorv 7 I 

0 

.o " .4 .6 .8 1.0 1.2 
Mach number 

Figure 40.-Theoretical and Experimental Hinge-Moment Coefficients Obtained for 
Leading Edge and Trailing Edge Control Surfaces in Steady Flow 
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Table 6 provides  a  relative  measure  of the  cost  reductions  that  may  now  be  achieved  for 
predicting  unsteady  loadings  caused  by  motions of leading  edge  control  surfaces. 

Table 6.-Computer Usage Timing Comparisons Obtained for an Oscillating Leading Edge 
Control Surface at M = .8, k = .5 

NASA 

(Sec.) (Sec.) 

NASA 
CR -2543 Ratio CR-3009 

I Total   Execut ion  Time I 777.161 I 134.640 I .1732 I 
Leading edge 
control  surface 
C-Matrix 

Total  

Per DWP .958  7.866 
495.574 .I218  60.356 

Trail ing edge 
control  surface 
C-Matrix 

Total  

.604 3.625 Per DWP 

228.373 

Main  surface 

.427  .685 Per DWP C-Matrix 
,6234 26.921 43.182 Tota l  

HIGH ASPECT RATIO  TRANSPORT WING  WITH CONTROLS 

It  should  be  noted  that  reasonable  correlations  obtained  for  the  previous  sample cases were 
achieved for  configurations having  large span  control  surfaces  oscillating  at small reduced 
frequencies.  Numerical  investigations  conducted to evaluate  solution  convergence  for  small 
span  control  surfaces  oscillating  at high k values indicate  that  the  number of analysis 
downwash  chords  needs to  be increased  in  proportion  to  the k value and inversely 
proportional  to  the  span  length  of  the  control  surface. 

Numerical  investigations  conducted to evaluate  sensitivity  in  analysis. of small  span length 
control  surfaces were accomplished using the wing and  control  surface  configuration  shown 
in  figure 41. The  0.20  chord  aileron  has  a  0.22  semispan  and  length  and  the 0.06 chord  tab 
has  a  length  of 0.12  semispan. 
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.652 

1.041 

0.20 chord  aileron 

.992 _____I 

(Dimensions in meters) 

Figure 4 1.-Analysis Configuration Used to Evaluate Solution Sensitivity of Small Span 
Length Control Surface  Configurations 

Figure 42 presents  a computer  plot of the spanwise  distribution  of  section lift due  to aileron 
deflection in steady  flow  for  two  distributions  of  downwash  chords in the analysis. The 
spanwise  variation  of the  two lift  distributions  are  almost  identical.  This  indicates  that 
converged  and cost  effective  analyses  may be achieved  by  using only  a  small  number  of 
downwash  chords  for  steady  flow  analysis  of  small  span  control  surfaces. 

.30 

.20 

Sectional 
lift 

.10 

.oo 

'I 

I 

9  downwash chords. 
I 

13 downwash  chords 
~ - I- 

.o .2  .4 

i 
1 

.6 .8 1 .o 1.2 
y - spanwise coordinate 

Figure  42.-Spanwise Lift Variation Due to Aileron Deflection in Steady Flow for Two 
Downwash Chord Distributions 
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Figure 43 presents  the  spanwise  lift  variation  due  to  tab  motions  at k = 1 .O, M = .8 for 
analyses  with  nine  and  thirteen  downwash  chords.  The  results  indicate  that  the  solutions are 
approaching  convergence,  but  are  not  fully  converged, even for  the larger number of chords. - 9 downwash chords 

.04 

.02 
Sectional 
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(irnag) .OO 

- .02 

- .04 

- .06 

Sectional 
I ift 
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.oo 

- .05 

. 00 .20 .40 .60 .80 1 .oo 1.20 

y - spanwise coordinate 

Figure 43.-Computer Plot of Spanwise Li f t  Variation Due to Tab Oscillation at 
k = 1.0, M = 0.8 
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Increasing the value  of  k  tends to  degrade the convergence  for  small  span  control  surfaces, as 
shown  in  figure 44 for M = 0.8 and  k = 2.0. 
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l i f t  
(imag) 
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.04 

.02 

.oo 

- .02 

- .04 

- .06 

.15 

Sectional 
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. 00 

- .05 

& 9 downwash  chords 

I I 
-et- 13 downwash  chords 

' 
.oo .20 .40 .60 .80 1 .oo 1.20 

y - spanwise coordinate 

Figure 44.-Computer  Plot of Spanwise Lift Variation Due to Tab  Oscillation at 
k = 2.0, M = 0.8 

Converged solutions  may be obtained  for  small  span  control  surface  configurations,  provided 
that  sufficient  care is taken  in  selecting  the  proper  number of  downwash  chords to satisfy 
accuracy  requirements. 
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Table 7 shows  the relative reduction in computer  costs  obtained  for  this  small  span  control 
surface analysis. 

Table 7. -Computer Usage Timing Comparisons Obtained  for  Small Span Length Control 
Surface  Analysis 

13 collocation 
chords, 
5  points 
per chord 

9  collocation 
chords, 
5  points 
per chord 

k = O  

k = l  

k = O  

k = l  

(Sec.)  (Sec.) Ra t  io 

Main surface 

Per DWP I C-Matrix 
Total I 17.234 I 10.033 I ,6402 

,265 I ,154 I 
Aileron 

,2041  14.444  70.761 Total Tab 

Per  DWP C-Matrix 
.2040 15.160 74.304 Total 

1.143 ,233 

C-Matrix 
I I i 

Per DWP I 1.089 I ,222 1 
I I i 

Total Execution Time 477.880 114.852  ,2403 
- 

I I I -  

Main surface 

Per DWP I .611 I .471 I C-Matrix 
Total I 39.720 1 30.598 I ,7703 

Aileron  Total 219.492 
C-Matrix Per  DWP 3.377 

Total 208.891 
C-Matrix Per  DWP 3.214  ,564 

Total Execution Time 

Per  DWP C-Matrix 
,2003 10.396  51.901 Total  Aileron 

Per  DWP C-Matrix 
,4865 5.583 11.477 Total Main surface 

,2747 32.736  119.180 
~~ 

,255  ,124 

1.1  53  .23 1 

Tab 
C-Matrix 

,1991 9.886 49.644 Total 

,220  1.103 Per  DWP 

Total Execution Time I 333.484 I 78.491 I ,2354 

Main surface 

.605 3.382 Per  DWP C-Matrix 
,1789  27.221 152.1 73 Total Aileron 

.409 .592 Per  DWP C-Matrix 
,690  1 18.39 1 26.651 Total 

~~~ 

I I I 1 

Tab I Total I 147.726 I 25.437 I ,1722 
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CONCLUSIONS 

Results  of  theoretical  and  numerical  investigations to  develop  economical  computing 
procedures have  been  applied to  an  existing  computer  program  that  predicts  unsteady 
aerodynamic  loadings  caused  by wing and  control  surface  motions. Large reductions in 
computing  costs  were  achieved by  removing the spanwise  singularity  of the  downwash 
integrand  and  evaluating  its  effect  separately  in  closed  form.  Additional  reductions  were 
obtained  by  modifying  the  incremental  pressure  term  that  accounts  for  downwash 
singularities at  control  surface edges.  Accuracy  of  theoretical  predictions  of  unsteady 
loading  at  high  reduced  frequencies is increased by  applying  new  pressure  expressions  that 
exactly  satisfy the high frequency  boundary  conditions  of  an  oscillating  control  surface. 
Comparative  results  indicate  that  the revised procedures  provide  more  accurate  predictions 
of unsteady  loadings as  well  as reductions  of 50 to  80 percent in computer usage costs. 



APPENDIX  A 
DEVELOPMENT OF PRESSURE  EXPRESSIONS  THAT  SATISFY 

THE  BOUNDARY CONDITIONS OF A  TRAILING  EDGE 
CONTROL SURFACE HAVING  A SWEPT HINGE LINE 

Pressure  expressions  are  formulated  such that  the change  in  boundary  conditions  are 
matched  exactly  around  the edges of  a  trailing  edge  control  surface.  The  analytical  procedure 
used to  obtain  these  expressions  originates  with  the  asymptotic  expansion  process suggested 
by Landall1 in  reference 3. Some  of  the  symbols  in  this  appendix  are  different  from  those in 
the main text  and  are  defined  where  introduced. 

The  formulation  of  these  pressure  expressions  follows  the  general  procedure given NASA 
CR-2543.  The  present’formulation  differs  from  that  of NASA CR-2543 in that  the 
transformation previously used to  eliminate  the  first  order  derivative  term  contained  within 
the  differential  equation is no longer  applied  within  this  basic  solution  process. 

The analysis coordinate  system  shown in figure 45 represents  a  segment  of wing having a 
swept  hinge  line  trailing  edge  control  surface  where  local  coordinates  x,  y  are  described in 
terms  of [ , 7 ,  xc, y, coordinates  of figure 1 .  All coordinates  are  assumed to be 
nondimensionalized  with  respect to some  reference  length “Q.” 

Wing 

1 
t 

Y 

Local coordinates 

Y = 7 - Y s  

x = [ - x c  

X 

Figure 45.-Coordinate Definition  for Analysis of  Trailing Edge Controls 
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The linearized  boundary  value  problem is  developed in  terms of the pressure  perturbation 
coefficient  Cp = PeikT  where  the  pressure  amplitude  satisfies  the  differential  equation  of 
flow 

B2pxx + pyy + - 2ikM2Px + k2M2P = 0 

The  motion  of  the  system is defined  as having the  control  surface  oscillating  about  the  hinge 
line  and  the  rest  of  the wing is maintained  in  a  stationary  position. 

The  displacement Zcs of  the  control  surface is assumed to  be simple  harmonic  and  defined 
as : 

Z c s  = % ( x - x , ) e  ikr 

- - - ik r  
Z C S e  

where r = - nondimensional  time. Vt 
Q 

The  boundary  conditions  resulting  from  this  motion  are  then given as 

p = - 2 [-6 1 ( x - x , )  + 2 i k U  ( x - x , )  - k 2  (x-xc)U  (x-x,)  u ( y )  (‘43) B 1 Z 

where the  unit  functions 

and 6 ( ) is the Dirac delta  function 

The  coordinates  are scaled to  remove  the 0’ factor  from  the  differential  equation  by  letting 
x = Px0 , y = yo , z = zo  and using the  relationship x - xc = x - y  tan A 
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The  boundary  value  problem  then  takes  on  the  definition  of: 

p -  2 0  = - 2   ~ 6 ( x e - y , t a n A l )  + 2 i k U ( x e - y o t a n A l )  I' 1 

- k2f3(xo-yotanAl)U(xo-yotanhl) 1 U ( y o )  (A4) 

The  coordinates  are  now scaled by  the local  scaling  factor e (E < < 1 )  by letting 

and  the  amplitude  of  the  pressure  expression is expanded in a series  in  increasing powers  of E 

where the  superscripts  on E are  exponents,  but  the  superscripts on P denote  the  order  of  the 
P function  and  are  not  exponents. 

The  new  coordinate  definitions  of  equation (A5) along  with  the  expanded  potential 
expression  of  equation (A6) are  inserted  into  boundary value problem  definition  of  equation 
(A4) t o  produce  a series of  new  boundary value problems  that  are  separated  with  respect t o  E .  

The  set  of  boundary value problems  resulting  from  this  process  are given as follows 

P O  + PO + PO = o  

P O  Z = - 2 6 , [ - 6 ( x  1 -y  t a n A l )  u ( y 0 )  on z = O  

x x  z z  

3 
Zeroth 

0 0  0 0  order, eo 

647) B 0 0  0 
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P '  +P' 
x x  

0 43 '0'0 0 0 0 
First 
order, E' 

P : = - 4 e H i k  U ( ~ . ~ - y ~ t a n A , ) U ( y ~ )   o n  z 0 - 0  (A81 
0 

on z o =  0 

P 3   + P 3  " - k 2 M Z P '  
+p; 2 B p x  

- 2ikM2 2 Third 
order, E x x  

0 0 0 0 .o 

P' = O  on z 3 0  
2 0 

(-410) 
0 

P" +P" = e Z p n - 1  +2 M~ p n - z  
+p: 2 

N'th 
order, e n  
(n 2 3) 

x x  
0 0 0 0  

E x  
0 

P" = O  on z\ = O  
2 ('41 I ) 
0 

0 

It is t o  be  noted  that  solutions of the  boundary  value  problems  of  the  third  order or greater 
do  not  contribute  to  a  change in boundary  conditions across the  control  surface  boundaries 
but  only  contribute  nonsingular  pressures  to  the overall expression.  Thus,  solutions  are 
required  only  for  the  boundary  value  problems  defined  equations (A7), (A8), and (A9). 
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The  solution of equation (A7) for  the  zeroth  order  boundary value problem i n  unscaled 
coordinates is given by  equation (A21) of NASA CR-2543 as: 

where 

x = E - 
Y = n - Y s  

t anh tanhl = - B 

unscaled 
coordinates 

now  with scaled coordinates x = X I B E ;  y o =   y / E ;  z = z / E  
0 0 

the  expression  takes on the  form: 

P0(xo,Y0 , O >  = -3 .rrB I n  [ d- -(x 0 s i n A l + y  0 cosAl  ) ] (A13) 

I t  is now  useful  to  make  a rigid body  rotation  of  coordinates  defined  by  the  following 
sketch: 

- 
X = X c o d  - y o  sinAl 

7 = x sinA + y CosAl 
1 0 0 

0 1 

( ~ 1 4 )  

- z =  Z 
0 

X 
X0 

then 

where 
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The  first  order  boundary value problem  (equation  (A8)) is restated  here  for  convenience  as: 

The x. derivative  expressed  in  rotated  coordinates is 

where t a d l  - - and - {$2 + tan2A B 

The  boundary value problem of equation (A1 5)  described  in  rotated  coordinates is  given as 

- ("*y*")I-4e,ikU (X)U (7-2 tanA, ) 
az 

The above  boundary value problem is then  decomposed  into  three  separate  parts  for ease of 
solution. The complete  solution for P' (X,y,T) is obtained by summing  the  solutions of the 
three  parts  defined as 

V 2 P " ( Z ,  f, S) = - 2ikM2 a P o  (X, 7, z )  
B az 

(A1 6 )  

2-0 

V2P 12($, 7,S) = 
2ikM'tanh a P o  (E, 7,Z) 

B B  a7 
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V’P 1 3 (  X , ? , Z )  = 0 

Solution  of  equation (A1 8) may  be  obtained  by  a  straightforward  application  of Green’s 
theorem  and  the  solutions of equations (A1 6) and  (A1 7) are  obtained  by  applying  flux 
theorem to  these Poisson equations in the  manner discussed by  Hewitt  in  reference 5 .  

An example  of  the  process used to obtain  a  solution  of Poisson’s equation is given as  follows: 

Consider  equation (A1 6) rewritten  as: 

From  equation  (A13),  the Po  solution  of  the  zeroth  order  boundary value problem is given 
in rotated  coordinates  as: 

where 

7 = x s i n A  + y cosA 
0 I O  

The first step is to  take  a  derivative  with  respect t o  7 
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then  a  derivative  with  respect to x’ is denoted  as: 

The  Poisson  equation  then  becomes: 

From  an  extension of Green’s  theorem,  the  solution of a Poisson equation is  given as: 

where 

and the volume V can occupy all space. Using the  relationshp of: 

and  performing an integration by parts gives the  result: 

1 e H  a J 1  
p y  = y2 (2ikM2) - 

R B  a x  

where 
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and  may  be  interpreted as the  potential  at  the  pointy, y, Z due  to  a  distribution of sources 
of  strength l / r ,  . The  potential J ,  is spherically  symmetrical  with  respect to  the origin, 
and  the  value  of J, may  be  obtained  by  applying Gauss’s flux  theorem  to  a  sphere  of radius 
r  that yields the  relationship : 

J, (r)= 7 + c o n s t a n t  1: (A23) 

Inserting  equation (A23) into  equation (A22) results  in: 

1 
P- a - g H  ikM2 $ - 

rE2 

and  the final solution  obtained  for P’ is obtained  by  integrating  with respect to  7 to  yield: 

P l  

The  solutions  for  the  remaining  components of the first order  problem  may  be  obtained in a 
similar manner  and  are  summarized as follows: 

p’2, - OH ikM2tanA 
IT B B 2  
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'In  like  manner,  the  second  order  boundary value problem  of  equation (A9) is subdivided 
into  components  that  are  readily solved and  the  sum  of  the  solutions will satisfy the second 
order  boundary value problem of equation (A9). 

The  second  order  problem is restated  here  for  convenience 

Po and P' are  expressed in terms  of  the rigid rotated  coordinates31 a n d 7  in  equation (A20) 
and  equation (A25), respectively. 

The  boundary value problem  can  be  expressed in terms of the31,y,Ycoordinates  by 
formulating  the x. derivative  in the rigid rotated  coordinate  system as 

and  applying  the  relationship  between  the Laplacians of rigid rotated  coordinate  systems 
given as 

The  second  order  problem  described i n  the rigid rotated  coordinate  system,Y,y,Y is then 
given  as 

The  boundary value problem is then  decomposed  into  four  separate  parts  for ease of solution 
The  solution P2 (x, y, z) is obtained  by  summing P Z 1 ,  P Z 2 ,  P23 ,  and P24 that  are  solution 
results  of  the  four  separate  boundary value problems  defined  as 

67 



p" (I-o = o  J 
V2P22(f,y,~) = - t a d  

2ikM' aP'(r, 7, t) 
B B  af 

p;21 z- 0 = O  

23 = o  

Solutions  of  equations (A27) and (A28) are  obtained  for  these Poisson equations in the 
manner previously  described after  the  appropriate  differentiation  of  equation (A2.5) has 
been  accomplished. Also, equation (A29) may  be solved in the  manner previously  described 
for  this  Poisson  equation.  The  solution  of  equation (A30) is accomplished  by  a  straight- 
forward  application  of Green's theorem. 

The  solution of the  second  order  boundary value problem is the  sum  of  the  solutions  of  the 
above  boundary value problems, i.e. 
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Thus,  the  final  expression  describing  the  pressure  loadings  that will satisfy the  change in 
boundary  conditions  around  the  boundaries  of  a trailing  edge control  surface  may  be given 
in  unscaled  coordinates  of figure 45  as follows: 

- x] 

Equation (A3 1) is the  complete  expression  for  the  pressure  loadings  required  to  satisfy  the 
boundary  conditions  on  a trailing  edge  oscillating control  surface  that is no  longer  restricted 
by frequency  limitations. This equation  needs  to have special modification  functions 
applied  to  it  such  that  planform  edge  boundary  conditions are  satisfied. This is accomplished 
by using the E, and “H” functions  described in NASA  CR-2543. 
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APPENDIX B 

DEVELOPMENT OF PRESSURE  DISTRIBUTIONS  THAT  SATISFY 
THE  BOUNDARY CONDITIONS ON SWEPT  WING HAVING  A 

LEADING EDGE CONTROL SURFACE 

Pressure distributions  are  formulated in  this  section  such that  the  boundary  conditions 
over an oscillating wing control  surface  configuration  are  satisfied  for  the  general  reduced 
frequency case. Some  of  the  symbols used here  differ  from  those  of  the main text and  are 
defined  where  introduced. 

The  formulation  of  these  pressure  expressions  follow  the general procedure given in NASA 
CR-2543.  The  fundamental  difference  between  the  derivations  made in this  section  and 
that  of NASA CR-2543 is that  the  “x”  derivative is retained i n  the linearized differential 
equation  of flow instead  of  transforming  the  differential  equation  into  canonical  form  as 
indicated  by  equation (B7)  of NASA CR-2543. 

The  procedure  used to  transform  the  differential  equation  into  canonical  form  provided  a 
relatively  simple set  of  boundary value problems  that  could be  solved  with the aid of Fourier 
transforms.  However,  the  transformation  of  the  differential  equation also requires  a 
transformation  of  the  associated  boundary  conditions.  The  transformed  boundary 
conditions  then  contain  an  exponential  function  exp (- ( x  - .as)) which was 
expanded  and  approximated by retaining  only  a few ter R, s of the series  within the original 
development  of NASA CR-2543.  The  effect  of  retaining  only  a few terms in the  expanded 
exponential  boundary  condition  limits  the  applicable range of reduced  frequencies to 
relatively  small  values for analysis  of  high Mach number cases. The pressure  expressions have 
been  reformulated  such  that  there is no longer  a  frequency  limitation on the high Mach 
number analysis  cases. 

i k M Z  

The analysis coordinate  system  shown in  figure 46 represents  a  segment  of  a  swept wing 
leading  edge that has a  control  surface  that  oscillates  about  a  hinge line located  aft  of  the 
leading  edge. All coordinates  are assumed to  be  nondimensionalized  with  respect t o  some 
reference  length “Q.” 
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A Leading edge 

Y = V - Y s  

Figure  46.-Analysis  Coordinate  System 

Solutions  of  the  mixed  boundary value problem  are  obtained  from the linearized 
differential  equation of flow given as 

B2@,, + 4yv + @ z z  - 2ikM2@x + k2M2@ = 0 

The  motion  of  the  system is defined as having the  control  surface  oscillating  about  the  hinge 
line and  the  rest of the wing  is maintained in a  stationary  position. 

The  displacement Zcs of the  control  surface is assumed to  be simple  harmonic  and  defined 
as 

= e , ( Z - E  )e ikr c s  

7 =-  Vt (nondimensional  time) 
B 
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The  mixed  boundary  conditions  are  then  defined  as 

+ikZ,, 
A f t  of 
Leading Edge 

$=O Ahead of Leading Edge 

The “on-wing’’ boundary  conditions  may be combined using a  unit  function  definition in 
“Y”  

u(Y)= [: ;:: 
The  resulting  boundary value problem is then  defined as 

B2$,, + 9,, + $ z z  - 2ikM2$-  X + k2M2$ = 0 

@ z = 8 H  [( l - i k Z c s ) + i k X ] U ( y )  Z>y tanA 
on z = O  

@ = O  on  z=O EKytanA 

A transformation  or  coordinate scaling is made  in  order to simplify the  differential  equation 
by  setting 

x = I/B; 
0 Y o  = Y; 

z = z  
0 

This  coordinate scaling  results  in a  transformation  of  the  leading edge definition as given by 

x B = y tanA 
0 0 

x = y o   t a n A / B  

= y tanA 

0 

0 1 
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The  new  definition of the  mixed  boundary value problem is then described as 

o z  '(~+UX0>U(YO> x 0 0  > y  t a n A  1 on 2 = o 
0 

0 

o= 0 x c y  t a d  on  z = 0 
0 0  1 0 

X F BB(l-ikxo); u = B,(ikB> 

In order to  study  the  problem in the vicinity of the leading  edge  corner, all coordinates  are 
stretched  such  that 

The  potential  function is then  expanded in a  series given as 

0 = $0  + € ' @ 1  + € 2 0 2  + 
where the  superscripts  on E are  exponents,  but  the  superscripts  on @ denote  the  order of the 
@ function  and  are  not  exponents. 

The  expanded  potential  function is then  inserted  into  the  differential  equation  and 
associated  boundary  conditions  of  equation (B5). A series of new boundary value problems 
are  obtained  by  collecting  terms  with  respect t o  the  powers of E .  The resulting  set of 
boundary value  problems  are less complicated  and  may  be solved more  readily  than 
attempting  to solve the original boundary value problem of equation (B5). 
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The  set of simplified  boundary value problems  resulting  from  the  asymptotic  expansion 
process  are given as follows: 

v 2 +  0 

4 O Z  - 0 
0 

o n  z - 0 ;  

o n  z = O ;  

I$'= 0 on z = O ;  

Zeroth 
order, E" 

x o > y 0  t a d l  

x o < y o t a n h l  (B6) 

First 
order, 

Second 
order, e2  

x o > y o   t a n A ,  

x , < y , t a n A ,  (B8) 

Third 
order, e 3  

x o > y 0 t a n A l  

x o < y ,   t a n A l  (B9) 
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The  zeroth  order  boundary value problem  may  be solved  in terms  of  an  unknown 
coefficient  multiplier  that  depends on  the result  of  the  global  integration.  However,  the 
coefficient  multiplier  cannot  be  evaluated  as  a  function  of  local  boundary  conditions  only. 
Also, the  boundary  conditions  across  the  side  edge  indicate  that  the  resulting  solution will 
be regular and  not  contribute to evaluating  the  finite  change  in  boundary  conditions. 
Consequently,  the  zeroth  order  solution will be  omitted  from  this  initial  solution  process. 
However, its  effect will ultimately  be  included  within  the  complete  solution  during  the 
global integration  that is performed  at  the  end  of  the  solution  process  which  evaluates  the 
final  loadings  using the  generated  residual  downwashes  as  boundary  conditions. 

It  should  be  noted  that  the  third  and  higher  order  boundary value problems do  not  define 
a  change  in  boundary  conditions  across  the  side  edge  of  the  control  surface. . A s  a  result,  the 
solutions  of  these  problems  provide  continuous  downwash  distributions  across  the wing 
control  surface  boundaries  which  result in additional  smoothness  within  the  residual 
downwash  sheets.  However,  experience  has  shown  that  only  the  boundary value problems 
that  contain  a  discontinuity  across  the  side edges in the  boundary  condition  definition  need 
to be  considered  in order  to  obtain reasonably  smooth  downwash  sheets  provided  that  not 
too high  values  of reduced  frequency  are  applied  within  the  analysis.  Consequently,  the 
third  and  subsequent  boundary value problems  are  omitted  from  the  solution  process. 

Thus,  the  critical  boundary value problems to be  solved are  the  first  and  second  order 
problems  as given  by equations  (B7)  and (B8)  with  the Go and @:o t e r m  set t o  zero. The 
sum  of  the  solutions of these  boundary value problems will then  provide  a  means to exactly 
match  the  change in boundary  conditions  across  the  side edges of a  leading  edge control 
surface  without having  a frequency  limitation  that was previously  implied  within the 
development of NASA CR-2543. 

The  critical  boundary value problems to  be solved  are then  defined as 

v 2 I p  - 0 
4; = X U ( Y ,  on Z = O ;  x. >Yo t a n h  

I 

$1- 0 o n  z=O;  xo<yo t anA 
1 

$:,= vx0 U(Y, on 2-0; x. >yo t a d l  

$ 2 3  0 on  z = O ;  x. cyo t anA 

First 
order 

Second 
order 
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Solution  of  the  first  order  boundary value problem  has  been  obtained in NASA CR-2543 and 
its  contribution to the pressure  coefficient will be  included  at  the  end of this  section. 

The  second  order  boundary value problem of equation  (B8)  has  the  form  of  a Poisson 
equation  tha.t  complicates  the  solution process if it is retained in its  present  form. However, 
the differenfial  equation  may  be changed into a  more  amenable  form by applying  a 
transformation  to  the  definition  of 4' such  that 

where  the  form of Fis  to  be  determined.  That is, 4* is defined  as  being  a  linear  combination 
of @ I  and  a  new  function  $-as is implied  from  the  form  of  the  differential  equation  of 
equation  (B8).  The  conditions  imposed  on 4' by 4 '  are  known  from  the  solution of the 
first  order  boundary value problem  and it only  remains to  determine  the  conditions  on 
such  that  the  linear  combination provides  a valid solution  of  the  second  order  boundary 
value problem. 

The  coordinate  subscripts  are removed  from the following  discussion  and will be  replaced at  
the  end  of  the  derivation. 

Restating  the  transformation 

then 

and 

= 29; + xv*+' 

Since v @ I  = 0 from  the  definition  of the first order  boundary value problem,  it  follows  that 

76 



From  the definition  of the  boundary  condition  imposed  on q!? within  equation  (B12), it 
follows that 

X $ i + T Z  =r xXU(y) + 5, -vxU(y)  
i kM2 

Therefore,  the  conditions  imposed  on F a r e  then  defined as 

Thus, the  solution  of  the  second  order  boundary value problem  of  equation (B 12) is given  as 

$I = ‘Yz x($ + the  solution  of  equation  (B14) 

It  should  be  noted  that  solutions of G1 and F ( o f  equation  (B14))  have  been  obtained in 
NASA CR-2543.  However,  the  pressure  expressions  resulting  from  the  above  are  different 
from the expressions of NASA CR-2543  due to  the  transformation used  in obtaining G 2 .  

The new  definition  of  the  pressure  loading  functions  are  formulated using the  expanded 
form  of the  potential  function 

By definition,  the  loading  functions  written in terms  of  the  pressure  coefficients  are given in 
unscaled coordinates  as 
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Inserting  equation (B 15)  into  equation (B 16) and  performing  the  indicated  operations 
results in the  expression  of  the  pressure  coefficient  that is valid for  the  general  reduced 
frequency case 

From  equation  (B65)  of NASA CR-2543, €4'  is given in unscaled  coordinates as 

where 

7 =v?I -y tanA 
1 

The x derivative  of €4' is obtained by noting  that 

y- (7t-T:) / ( i @ + t a n A )   w i t h  Yl b e i n g   R e a l .  

or 

where 
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The  first  part of the pressure  coefficient  of  equation  (B17)  (that  part involving $1) can then 
be written as 

It  can  be  shown  that 

Inserting  the  above  into  equation  (B20)  and  collecting  terms  results in a  partial  expression 
of the  pressure  coefficient of equation (B 17) given as 

or 

i k  k2M2 m + ( E - y t a n A ) +   J T J E - y t a n A J x  +$ y 

J i2+B2y2+(K-ytanA)+ JT J x - y t a n I i / i v  - +E 
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The  second  part  of  the pressure  coefficient  defined by  equation (B17) is obtained  by 
modifying  equation (B68) of NASA CR-2543 by  replacing ik by  ik in the out-of-phase  part 
of  the  pressure  coefficient. Thus, the  second  part  of  the  pressure  coefficient  is given as P2 

C ; ( E , y ,  o)=+[$ [tan,+,,( 2ZtanA-(3tanZA+BZ)y 4 

2 
+ iky Sgn(y)tanh 

2 

f vf -2v1 0, 

where 

Y = V-Ys 

6' = $ 2  + tan2A - 

c ,  =(. - A) 

v = io k$ H 

X = OH ( l - ikEc)  

The  sum of equations (B21) and (B22) form  the  complete  expression of the pressure 
coefficient that does  not  contain  any  frequency  limitations.  These  expressions  must be 
modified  by  a  suitable  modification  function  such  that  the  boundary  conditions  are satisfied 
along  the edges of the  planform  boundary.  The  modification  functions  that  satisfy  these 
constraints  are  described in NASA CR-2543. 
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Results  of  theoretical  and  numerical  investigations  conducted to  develop  economical  computing 
procedures  have  been  applied t o  an  existing  computer  program (see NASA CR-2543)  that 
predicts  unsteady  aerodynamic loadings  caused by leading  and  trailing  edge  control  surface 
motions in subsonic  compressible  flow.  Large  reductions  in  computing  costs  are  achieved  by 
removing the spanwise  singularity of  the downwash  integrand  and  evaluating  its  effect  separately 
in  closed form.  Additional  reductions  are  obtained by modifying  the  incremental pressure term 
that  accounts  for  downwash singularities at  control  surface edges.  Accuracy  of theoretical 
predictions  of  unsteady  loading at  high reduced  frequencies is increased  by  applying  new  pressure 
expressions that  exactly  satisfy  the high frequency  boundary  conditions  of an  oscillating  control 
surface.  Comparative  computer  results  indicate  that  the revised procedures  provide more 
accurate  predictions of unsteady loadings as well as providing reduction  of 50 to 80 percent in 
computer usage costs. NASA CR-145354  describes  the  computer  program. 
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